引物GC含量分别高达70%以上时,用普通PCR很难理想地扩增出此基因。因为G、C之间形成三对氢键,解链所需能量较高,故模板较难打开,在常规变性温度下,DNA模板变性不完全,同时由于单链的G+C丰富区易于自身互补配对形成稳定的发夹环二级结构,而使PCR引物难于结合到模板上,DNA聚合酶也难于延伸或停止延伸,结果常出现严重的非特异性条带,甚至扩增不出靶基因。
在扩增高含量GC的基因时,可对PCR条件进行几个方面的优化:
1、热启动(hot start)PCR:
使用热启动PCR,一方面通过扩增前的加热,使双链模板充分解链,另一方面,通过高温启动反应,促进引物的特异性复性与延伸;增加有效引物的长度,提高了反应的特异性与灵敏性,并减少了引物二聚体或多聚体的形成,从而能提高GC富集区的扩增效率。
我们采用Qiagen公司提供的Hotstar Taq DNA聚合酶,此酶含有一种热不稳定性保护抗体( Taqstart antibody),该抗体在低温时与Taq酶结合,抑制其活性,当反应体系达到一定的温度后,这种热不稳定性保护抗体就从Taq酶上脱落下来,Taq酶得以恢复活性。我们在PCR开始时就加入Hotstar Taq DNA聚合酶,并延长起始变性时间如95℃变性15 min,能使模板DNA完全变性,以便提供最大数量的引物配对位点,避免了引物二聚体和非特异性配对。
2、降落(TD)-PCR:
PCR开始时的退火温度高于估计的Tm值,随着循环的进行,退火温度逐渐降到Tm值并最终低于这个水平。退火温度选择应根据引物的长度及G+C的含量,在Tm值允许的范围内,较高的退火温度可大大减少引物和模板的非特异性结合,提高PCR反应的特异性。
首先在高于引物Tm值的温度扩增几个循环,然后把退火温度逐渐降到两引物的Tm值附近,在随后的循环中,对退火温度进行梯度实验。这样能保证第一引物-模板杂交事件发生在最互补的反应物之间,即那些产生目的扩增产物的反应物之间。尽管退火温度最终会降到非特异杂交的Tm值,但此时目的扩增产物已开始几何级扩增,在剩下的循环中处于超过任何非特异PCR产物的地位。因此,TD-PCR既能增加反应特异性,又能提高PCR产物的产量。
3、Mg2+浓度、dNTP浓度、引物浓度、模板等也影响PCR的产量及产物特异性。它们的浓度过高反应特异性降低,过低则PCR产物产量减少,即高特异的反应条件可能与高产量的反应条件并不一致。
点击数:0