科研 话题的优秀回答者

今天要给大家拆解的文献是今年5月刚刚发表在Aging上的文章,影响因子5.515。

文章题目是Identification and validation of hub microRNAs dysregulated in esophageal squamous cellcarcinoma

从标题很容易看出本研究是常规的hub基因研究,但本研究之所以能发表在5分+上,我觉得一是文章研究的是microRNAs,有所新意;二是文章还做了点简单的实验对筛选出的两条microRNA进行了表型验证。

数据解构

挑——差异表达miRNA筛选

本文首先通过GEO数据库筛选食管癌差异表达microRNAs(miRNAs)。作者选用了GSE114110和GSE43732两个数据集进行分析。

值得一提的是,作者还利用R语言的limma包对数据集进行了标准化处理。

作者设定的阈值为|log2FC|≥ 1和P < 0.05,由图E和F的火山图可以看出筛选出的差异表达miRNAs相比于平时我们筛选mRNA时是要相对少一些的。

作者使用的是limma包进行的差异表达分析,使用GEO数据库的在线工具GEO2R也能达到同样的目的。筛选到差异基因后,作者使用R语言VennDiagram包制作韦恩图,使用网站Draw Venn Diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/)也可做出类似的图。最终筛选得到3个上调的和5个下调的miRNAs。

此外再提一句,在分析多个数据集时,可以将多个数据集的数据合并分析,但是必须得先去掉批次效应。如果不想去进行去批次的操作,可以像这篇文章这样采用取交集的方式,这样也算是有一定道理的。

联——miRNA靶基因预测

miRTarBasehttp://mirtarbase.mbc.nctu.edu.tw/php/index.php)是一个经过实验验证的miRNA-靶基因相互作用数据库,作者利用这个数据库对8个差异表达的miRNA的靶基因进行了预测。3个上调的和5个下调的hub miRNAs总共分别预测出468和753个可能的靶基因。

除了miRTarBase网站外,常用的miRNA靶基因预测网站还有Targetscan、ENCORI、miRDB、miRWalk等。

圈——miRNA靶基因GO和KEGG富集分析

进一步地,作者对预测出468和753个可能的靶基因分别做了GO和KEGG富集分析。

本文中作者使用的是DAVID(https://david.ncifcrf.gov/) 网站,实际上GO和KEGG富集分析还可以用Metascape(https://metascape.org/gp/index.html#/main/step1)。相比于DAVID,Metascape不但数据更新,还可以直接生成美观的图片。对于有R语言基础的小伙伴,还可以使用clusterProfiler包进行富集分析,并可利用ggplot2绘制气泡图。

联——PPI网络分析得到hub基因,miRNA-hub基因互作网络构建

作者又使用STRING数据库对预测出468和753个可能的靶基因分别作了蛋白蛋白互作(PPI)分析,并进一步地利用Cytoscape软件筛选得到hub基因各10个。然后对这20个基因做了GO和KEGG富集分析。

本文作者将GO分析的三大类:生物过程(BP)、分子功能(MF)、细胞组分(CC)分开展示,并对靶基因、hub基因分别做富集分析,因此得到的图比较多。

随后,作者利用Cytoscape软件构建miRNA-hub基因网络。由于miR-196a-5p和miR-1-3p所关联的hub基因最多,作者进一步地利用miRNACancerMAP数据库分析了miR-196a-5p和miR-1-3p所涉及的信号通路。

miRNACancerMAP(http://cis.hku.hk/miRNACancerMAP/)是一个可以预测、构建癌症miRNA调节网络的在线工具,只需点击网站上方的Quick Search,输入想要研究的miRNA,即可得到分析结果。

靠——miRNAs预后价值分析

随后,作者利用利用TCGA数据库、细胞系以及临床样本验证了miR-196a-5p和 miR-1-3p的表达情况。并利用基于TCGA数据的starBase数据库对miR-196a-5p和miR-1-3p进行Kaplan-Meier生存分析,以评估其预后价值。

干湿结合

到这里其实这篇文章已经可以发表了,但最新的Aging已经不收纯生信文章了,要发5分必须补湿实验。

干湿结合的参考组合有:

1、生信+临床标本验证

2、生信+功能表型验证(细胞或者细胞+动物均可)

3、生信+临床+功能表型验证

4、生信+临床+功能+机制研究

这篇文章运用的是“生信+临床+功能表型验证”组合,作者做了一点实验来验证miR-196a-5p和miR-1-3p对食管癌细胞增殖和迁移的影响。所用实验为CCK-8、EdU和Transwell等常规实验技术,比较简单。这里作者只是用了miRNAmimics做实验,其实还可增加使用miRNA inhibitors的实验。

总结

作者先用GEO数据库筛选得到食管癌差异表达miRNAs(挑);

然后利用筛选得到的8条miRNAs预测靶基因(联);

并对靶基因进行富集分析(圈);

进一步地在靶基因中筛选得到hub基因(联);

并筛出两条与hub基因联系最多的miRNAs(联);

最后对这两条miRNAs进行生存分析,来说明临床意义(靠),

其实本文还可增加临床相关性分析,ROC曲线等分析进一步丰富内容。

此外,这篇文章还增加了一点湿实验的内容:利用细胞系和临床样本验证两条miRNA的表达情况(临床标本验证),并利用细胞实验验证其对食管癌细胞增殖迁移能力的影响(功能表型验证)。

整体来说,全文基本全部按照“挑、圈、联、靠”的生信套路来进行,所用技术以在线工具为主,适合初学者模仿。

最后再给大家归纳一下干湿结合研究套路模板(加粗的是本文所用的方法):

干:

挑:差异表达分析筛选目的基因

圈:GO/KEGG富集分析、GSEA富集分析、WGCNA网络分析、其他特殊分析(miRNA相关通路预测、免疫浸润等等)

联:蛋白蛋白互作(PPI)分析、miRNA交互作用、分子网络构建

靠:生存分析、临床相关系分析、单因素/多因素分析、差异表达预后分析、ROC曲线

湿:

1、临床标本验证(包括细胞系和临床样本)

2、功能表型验证(细胞或者细胞+动物均可)

3、临床+功能表型验证

4、临床+功能+机制研究

本文首发于“ 挑圈联靠”微信公众号

转载请注明:解螺旋·临床医生科研成长平台。

点击数:0